Unit Name: Protein homeostasis

Person in charge: dr hab. Ewa Laskowska, prof. UG

Forms of teaching: Lecture

Implementation: In-room teaching (can be online if needed)

Number of hours: Lecture: 15 hours

ECTS credits: 2

ESTIMATE OF WORKING TIME Work in contact with the teacher: Participation in classes: 15 hours Consultation: 5 hours The unassisted student work (studying the literature, preparing for tests) -10 hours TOTAL – 30 hours

Language of Instruction: English

The academic cycle 2024/2025 summer semester

Didactic methods:

Lecture with multimedia presentationDiscussion, problem solving tasks

Forms of credit: Examination

Basic evaluation criteria:

Students are expected to attend all lectures. The exam will cover information presented during lectures and supplementary materials indicated by the teachers. The grade will be based on the following scale:

below 51% - 2 51-60% -3 61-70% - 3.5 71-80% - 4 81-90% -4,5 91-100% - 5

Method of verification of the assumed learning outcomes: Test, multiple-choice and open-ended questions

Required courses and introductory requirements A. Formal requirements -B. Prerequisites Basic knowledge on protein structure

Learning Objectives

The overall goal of this course is to gain recent knowledge on 1) mechanisms responsible for maintaining protein homeostasis in prokaryotes and eukaryotes and 2) molecular processes underlying age- and disease-related disturbances in proteostasis.

Course content:

1. Protein structure, folding and degradation; molecular and chemical chaperones;

2. Protein condensates and aggregates, intrinsically disordered proteins, liquid-liquid phase

separation of proteins, membrane-less-organelles in bacteria and eukaryotes

3. Proteostasis in ageing and disease, protein aggregation diseases (amyloids, prions,

Alzheimer's and Parkinson's diseases), proteostasis dysregulation in cancer.

Bibliography of literature:

Recent original articles on topics mentioned in the course content.

Protein folding, an introduction. (C. M. Gomes & P.F.N. Faisca, Springer, 2019) Protein misfolding and disease: principles and protocols (P. Bross, N. Gregersen, Humana Press, 2003)

Protein misfolding diseases. Methods and protocols (C.M. Gomes, Springer, 2019)